人脑中的网格细胞
网格细胞 (grid cell)的发现,为我们理解大脑中如何表征空间位置提供了很直接的证据。2005年,一组挪威科学家在Nature上最先报道了大鼠脑中网格细胞的存在。研究者让大鼠在1平米左右的空间内自由活动,同时记录大鼠内嗅皮层 (entorhinal cortex)内神经元的发放模式。其中有一类很有意思,当大鼠走到环境中特定位置时神经元会激活,而且引起神经元发放的位置在空间中呈规则的形状排列。如下图所示,黑色或红色的线代表老鼠运动的轨迹,红色线表示网格细胞激活的位置。在整个空间中,网格细胞发放的点成规则的等边三角形排列,使整个空间成六边形蜂窝状。这个发现第一次揭示了老鼠大脑中对外部环境空间的表征方式。 图片来自 这里 那么人类脑中是否存在网格细胞呢?对于人来说研究网格细胞有两个困难。第一,无法对人进行单细胞记录,要记录活体人类的大脑神经活动,目前最好的办法只能是fMRI。但以fMRI的分辨率只能记录成千上万神经元的集合。第二,MRI扫描需要被试躺在机器里保持静止,被试根本无法在空间自由走动。 图片来自 这里 不过最近英国伦敦大学学院 (UCL)的一组科学家巧妙的用fMRI发现了支持人类存在网格细胞的证据。首先研究者采用虚拟现实技术,给被试呈现如上图一样的场景。被试可以操作键盘在场景中走来走去,同时完成一些任务。因为fMRI只能记录神经元群的活动,因此研究者先研究了大鼠脑中网格细胞神经元群的活动特性。因为不同网格细胞对环境中的不同位置起反应,从而可以对整个环境的不同位置进行编码,因此记录一群细胞是无法区分单个细胞所编码的网格位置。但是,对于同一只老鼠的不同网格细胞,网格朝向角度是相同的。进一步研究者还发现,网格细胞群的活动还受运动方向的调制。如果运动方向与网格朝向一致,则神经活动更高。最后,网格细胞的发放还受到运动速度的调制。运动速度越快,网格细胞群的网格性就越强。根据这三个属性,就可以用fMRI验证网格细胞的是否存在。 对于每个被试来说,网格细胞的朝向是不一样的。因此研究者首先用用结构像定义内嗅皮层,然后找到对某一运动方向相应最强的方向。实际上,内嗅皮层区域的激活在以60度为间隔的六个方向上激活最强,而且激活强度还受到运动速度的调制。随后再用新的一批数据,在全脑中寻找激活水平受到运动方向调制的区域,结果在全脑范围内只找到了内嗅皮层的区域。并